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Abstract
We have developed a quasiparticle self-consistent GW method (QSGW ), which
is a new self-consistent method to calculate the electronic structure within
the GW approximation. The method is formulated based on the idea of a
self-consistent perturbation; the non-interacting Green function G0, which is
the starting point for GWA to obtain G, is determined self-consistently so
as to minimize the perturbative correction generated by GWA. After self-
consistency is attained, we have G0, W (the screened Coulomb interaction) and
G self-consistently. This G0 can be interpreted as the optimum non-interacting
propagator for the quasiparticles.

We will summarize some theoretical discussions to justify QSGW . Then
we will survey results which have been obtained up to now: e.g., band gaps
for normal semiconductors are predicted to a precision of 0.1–0.3 eV; the self-
consistency including the off-diagonal part is required for NiO and MnO; and so
on. There are still some remaining disagreements with experiments; however,
they are very systematic, and can be explained from the neglect of excitonic
effects.

1. Introduction

Nowadays, it is increasingly required to have an accurate simulator for the electronic structure
of materials. The experimental techniques to measure materials at the atomic level continue
to advance. However, the information from them is somehow limited and complex: the data
obtained can often be hard to understand without simulations. With the help of simulation,
we can resolve what the experimental data means. Also, the electronic structure calculational
techniques can themselves be used as tools to design materials from the atomic level. Such a
new direction is replacing the old-fashioned way of mere trial and error to find new materials.
We need to know what factors control the required properties of materials. Then we can make a
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new strategy to develop better materials efficiently. We expect such a simulator to treat a wide
range of materials in a unified method, because materials are complex; e.g., some possible
spintronics materials contain magnetic atoms embedded in semiconductors.

The standard method to calculate the electronic structure from first principles is the local
density approximation (LDA) to density functional theory (DFT) [1, 2]. Though it has been
highly successful, it is still limited. It can fail in many cases, especially when electrons
are localized, as are d and f electrons, or very sparse (then the charge fluctuation is large).
The mirror potential near a metal surface and the van der Waals interactions are also not
well described. In addition, the eigenvalues obtained by DFT are not simply taken as the
quasiparticle energy (QPE) from the beginning; DFT–LDA underestimates band gaps. This
often makes the interpretation of its results very problematic. Transition metal compounds,
diatomic molecules such as F2, and so on, are not described well [3].

To overcome these difficulties, kinds of method ‘to go beyond LDA’ have been proposed.
Popular ones are the GW approximation (GWA) and LDA + U .

The standard procedure of the GWA [4] in an ab initio method is a perturbation treatment
to calculate QPEs starting from the Kohn–Sham eigenfunctions and eigenvalues given by DFT–
LDA [5]. We refer to this as ‘1shotGW ’. This has been applied to various kinds of cases,
resulting in much improvement over DFT–LDA. However, as we showed in [6], 1shotGW
is less satisfactory than was generally believed, because many calculations were done within
a pseudopotential framework. In our full-potential based GWA, the band gaps given by
1shotGW are systematically smaller than experimental values [6, 7]. Further, 1shotGW is
worse in cases when the DFT–LDA is poor as a starting point. Too-small band gaps in DFT–
LDA overestimate screening, which is not so suitable for executing GWA. One example is
InN: as shown in [6, 7], the band gap ∼0.0 eV given by 1shotGW is too small in comparison
with the recent experimental value of 0.7 eV [8]. (However, note that even 1shotGW is still
useful. In fact, figure 1 in [7] contained a prediction that the old experimental value ∼1.9 eV
was wrong; the figure showed too large ‘GW error’ for InN: only InN violated the trend seen in
other semiconductors. We had no explanation, but finally it turned out that experimental value
was wrong at that time.) So we somehow need a better starting point than DFT–LDA to cover
a wide range of materials.

A possible choice is to make GWA somehow self-consistent. The effects of the
eigenvalue-only self-consistency (keeping the eigenfunctions as given in LDA), was discussed
by Surh et al [9]. Recently, Luo et al [10] applied it to ZnS and ZnSe, where they showed
that the band gaps of 1shotGW 3.19 and 2.32 eV for ZnS and ZnSe are increased to 3.64
and 2.41 eV by the eigenvalue-only self-consistency. The differences suggest the importance
of this self-consistency. Furthermore, for ZnSe, the value 2.41 eV changes to 2.69 eV when
they use eigenfunctions given by generalized gradient approximation (GGA). This difference
suggests that we may need to look for a means to determine optimum eigenfunctions for GWA.
Aryasetiawan and Gunnarsson applied another kind of self-consistent scheme to NiO [11].
They introduced a parameter for the non-local potential which affects the unoccupied eg level,
and made it self-consistent. They showed that the band gap of 1shotGW is ∼1 eV, and that
it is improved to ∼5.5 eV by the self-consistency. Our newly developed ‘quasiparticle self-
consistent GW ’ (QSGW ) method [12–17] is such a kind of self-consistent method.

On the other hand, the GWA starting from the optimized effective potential (OEP) method
with exact exchange (EXX) has been performed recently, e.g. in [18, 19]. However, it is
not clearly justified from the logical point of view and also in practice. The EXX-only (or
with LDA level of correlation) OEP method does not necessarily give the true Kohn–Sham
eigenvalues. As shown in [20], the RPA correlation cancels out a large portion of the band gap
enhancement in EXX, especially for d electron systems. This finding was recently confirmed
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by others in semiconductors [21]. The larger band gap (better agreement with experiments)
given by EXX is somehow accidental. Furthermore, from the beginning, there is no strong
reason to calculate QPEs in GWA starting from even the true Kohn–Sham eigenfunctions. The
discussion below about the G0W 0 approximation (Z cancellation) suggests that G0 should be
made not of the Kohn–Sham eigenfunctions, but the QPE and QP eigenfunctions. In practice,
EXX-only overestimates the magnetic moments in transition metals such as Fe and Ni, and
EXX + RPA corrects the poorness of EXX-only, as shown in [20].

The LDA+U method [22] is widely used to correct the difficulty in the LDA. It succeeded
in giving some reasonable explanation of the electronic structure for systems such as transition
metal compounds, which are poorly treated within the LDA. The success is because it includes
a screened exchange term for d electrons (or f electrons) in it; the term pushes down only the
occupied states and enhances the splitting between d electrons. However, it contains difficulties:

(i) Its formulation is somehow ambiguous. It adds the U term for d electrons to the total
energy, then subtracts the double-counting (dc) term from the LDA exchange–correlation
potential. The definition of the dc term is not so convincing. The centre of d bands relative
to, for example, the oxygen 2p band cannot be changed relative to the LDA; however, there
is no reason why this must be so.

(ii) The determination of U is not so simple; it cannot be easily determined within the method.
Further, it is not so clear whether the assumption of fixed J and J ′ (obtained from atomic
calculations) is valid.

(iii) The special treatment for d electrons is problematic when the hybridization between sp
electrons is important; it can cause an artificial imbalance in the electron occupation.
Further, the definition of d orbitals can be ambiguous.

Thus it is reasonable to identify LDA + U as a method falling between a model and a first-
principles method. A problem is that the important features such as dielectric response and
transport are mainly dominated by sp electrons even in such systems; LDA + U gives no
improvement for sp electrons [23]. Methods that build on LDA + U , but enhance it, such as
LDA + DMFT, cannot improve these problems.

As we will show, QSGW includes the advantages of GWA and also of LDA+U . QSGW
is completely parameter-free in principle. From the perspective of LDA + U , it may be taken
as an extension in which U is internally determined self-consistently; yet it is more than that:
QSGW is free from the difficulties explained above. From the perspective of the GWA, not
only the eigenvalue but also the eigenfunction are made self-consistent; thus it is satisfactory as
regards the Z factor cancellation as discussed below, and from the perspective of self-consistent
perturbation [17]. In section 2, we present some theoretical discussion. In section 3, we survey
our results so far.

2. Theoretical discussion: why QSGW?

We summarize the considerations of why we are using QSGW [17]. First, we explain the
Z factor cancellation, which justifies the so-called G0W 0 approximation (here G0 means the
QP part included in G). Then we show that the total energy minimization cannot be a way to
determine G; but the total energy can be used to determine QPE. Finally, we present a minimum
explanation for the fundamental equation of QSGW .
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2.1. Justification of G0W 0 approximation from �[G]—Z factor cancellation

Here we will explain the ‘Z factor cancellation’. This justifies the so-called G0W 0

approximation.
The Luttinger–Ward (LW) functional (a version of LW functional) E[G] [24] can be

derived from the functional Legendre transformation and the adiabatic connection (the coupling
constant is λe2, where λ changes from zero to one) in a straightforward manner [20, 25, 26] as

E[G] = −i tr

[
ln G + i

∂G

∂ t

]
+ Ek[G] + Eext[G] + EH[G] + Exc[G], (1)

where the second–fifth terms on the right-hand side are the kinetic, external, Hartree, and
exchange–correlation terms, which are functionals of G. For definition of the first term, some
regularization procedure is assumed to remove constant infinity. Along the path of the adiabatic
connection (for any λ between 0 and 1), we keep G fixed by the non-local time-dependent
potential V eff

λ (r, r′, ω). G for the given external potential is determined by

0 = 1

−i

δE[G]
δG

= G−1 − ω +
(−∇2

2m
+ V ext + V H +�

)
. (2)

−G−1 +ω comes from the derivative of the first term in equation (1). The self-energy is given
by �[G] = 1

−i
δExc[G]
δG . As is well known, this�[G] is symbolically written as � = GW�. We

use symbolical notations in the following. Note that this kind of formalism is sometimes useful
as the basis for formal discussion, e.g. conservation laws (symmetry of E[G] on G), dynamics
of G (effective action formalism), and so on [25].

G can be written as

G = Z G0 + Ḡ, (3)

where G0 is the QP part of G, Z is the renormalization factor, and the Ḡ is the incoherent part.
Let us consider how the contributions from G0 are included in �[G] = GW [G]�[G]. With
equation (3),�[G] is written as� = (Z G0 + Ḡ)W [Z G0 + Ḡ]�[Z G0 + Ḡ]. Z looks explicitly
included; however, we will show that the contributions from the Z factors essentially cancel
out. The arguments are summarized in (a) and (b) below.

(a) In the integration of GW� for given G, W , and �, W (q → 0, ω → 0) is the dominant
part. In this limit

� → 1 − ∂�

∂ω
= 1/Z . (4)

from a Ward identity. Here we need to assume the insulator case. Then there is a cancellation
between Z from Z G0 and 1/Z from �. In the case of a metal, there is an additional term in the
right-hand side of (4) due to the existence of the Fermi surface; then we expect � > 1/Z , see
e.g. [27]; point (b) below should be interpreted in the same manner. In any case, we can claim
the poorness of fully self-consistent GW which neglect �, as discussed in the following.

(b) Given the proper polarization function�, W = v(1−v�)−1. �(1, 4) = �̄(1, 1; 4, 4),
which is written as

�̄(1, 2; 3, 4) = G2 + G2 I G2 + G2 I G2 I G2 + · · · , (5)

where G2(1, 2; 1′2′) = G(1, 2)G(2′, 1′). This formula is in matrix notation, e.g. G2 I means∑
2,2′ G2(1, 1′; 2, 2′)I (2, 2′; 3, 3′). G2 contains an electron–hole pair excitation with weight

Z 2 because G2 contains Z G0 × Z G0. Let us consider how much the pair excitation is included
in the proper polarization �̄ as its intermediate states. To do so, consider how �̄(1, 2; 3, 4)
changes when the pair excitation is added (or removed); this means taking the derivative. As we
can show δ�(1,4)

δG2(2,2′;3,3′) = �(1, 2, 2′)�(4, 3′, 3), we can see that the pair excitation is included
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in �̄ with Z factor weights 1
Z × Z 2 × 1

Z = 1 for q → 0, ω → 0, because of (4) ( 1
Z is

from a �). Bechstedt et al demonstrated this cancellation in practice in the lowest level of
approximation [28]. This suggests that �(1, 2) ≈ −iG0 × G0 is a reasonable approximation
because it contains the electron–hole pair weights in its intermediate states with unit weight, as
expected.

This analysis has assumed that the GWA is dominated by the long-range part of W ; thus
we may expect that such Z cancellation can be less effective if W is short-range. The above
discussion explains why a method that constructs � through the so-called fully self-consistent
GW approximation [29–33] is poor; because of the omission of the vertex function, Z in
G = Z G0 + Ḡ is not cancelled. In principle, � = δExc[G]

δG must be formally exact; however,
this series of expansion should be very inefficient: it contains large cancellations between terms
so as to cancel out the effect of Z as seen in (a) and (b).

On the other hand, the G0W 0 approximation looks reasonable, because it includes the
contributions from QPs with correct weights. From the beginning, this is what we expect from
the Landau–Silin quasiparticle picture. This Z factor cancellation is generally important. For
example, the Bethe–Salpeter equation (BSE) can be described as the sum of the ladder diagram;
if one uses G instead of G0 in the sum, it should give a poor result.

To conclude, it looks promising to calculate �[G] through the quasiparticle part of G0

contained in G. This requires the mapping G → G0 → �, where we can use the G0W 0

approximation for G0 → �. From this �, we can calculate the new G; this suggest a self-
consistency cycle like G → G0 → G → G0 . . .. The problem is how to extract G0 from G;
the QSGW method gives a prescription.

2.2. G is not determined by total energy minimization

We now assume that there is some non-interacting Green function G0 = 1/(ω − H 0)

which well reproduces the QP propagator G0 in G in the previous section. The important
contribution is low-energy part: high-energy parts are irrelevant (or not necessarily so accurate)
for determining W and the ground state. With some non-local static Hermitian potential
V eff(r, r′), H 0 is written as

H 0 = −∇2

2m
+ V eff(r, r′). (6)

We can construct the RPA total energy ERPA with the adiabatic connection [17] as a functional
of G0 (thus of V eff). It consists of the Hartree–Fock (HF) part of the energy plus the RPA
correlation energy Ec,RPA. Note that the HF part of the total energy does not include QPEs
(eigenvalues of H 0), but Ec,RPA includes them.

Contrary to the local potential case as in the Kohn–Sham construction of DFT, it is
meaningless to minimize ERPA with respect to V eff(r, r′). As V eff(r, r′) contains degrees of
freedom that can shift the QPE while keeping the eigenfunctions as they are, it is possible to
change only Ec,RPA through the change of QPE caused by a change of V eff(r, r′). Thus Ec,RPA

can become negative infinite (no lower bound) when all QPEs are moved to the Fermi energy.
On the other hand, it is possible to determine QPEs from the total energy ERPA; the

functional derivative of ERPA with respect to the occupancy of the states 	i gives the QPE
as εi = ∂ERPA

∂ni
[34]. This is in agreement with QPEs calculated by the GWA starting from

H 0. Thus, under the constraint of fixed QP eigenfunctions, we can determine the QPE self-
consistently; we use these εi in the expression of ERPA and take its derivative to determine next
εi : this is repeated until convergence. This is nothing but the eigenvalue-only self-consistent
scheme. QPEs are not determined by the total energy minimization, but this self-consistency
condition is meaningful.

5
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In contrast to QPEs, QP eigenfunctions might be determined by the minimization of
ERPA. However, such a formalism looks too complicated. Further, only the occupied QP
eigenfunctions are included in the HF part of it; thus, continuity (smoothness) from the
occupied eigenfunctions to unoccupied eigenfunctions will be lost. Thus we take another
possibility to determine not only QPEs but also QP eigenfunctions in a self-consistent manner
in the following.

2.3. QSGW formalism

In QSGW , we consider how to make a self-consistent cycle G0 → G → G0 → . . . to
determine G0. Here G0 is reproduced from some H 0 (or V eff) as in (6). We use the GWA for
the mapping G0 → G. As for the mapping G → G0, we gave a discussion from a perspective
of self-consistent perturbation theory so as make the difference between G and G0 as small as
possible in some sense (we must define how to measure the difference) [17]. A good choice is

V xc = 1

2

∑
i j

|ψi 〉
{
Re[�(εi)]i j + Re[�(ε j)]i j

} 〈ψ j | (7)

for the mapping G → G0; the time-dependent �(ω) in G is replaced with the static V xc.
This is consistent with the conclusions drawn about self-consistency in the previous

sections. In fact, we can say that G0 here represents the QP part of G (because V xc
ii =

Re�(εi)ii in (7); the QPE in G is in agreement with those in G0 if we neglect off-diagonal
terms).

3. Summary of QSGW results

We have applied QSGW to wide range of materials and to some topics [12–17]. QSGW can
give satisfactory results in comparison with experiments. We still observed some discrepancies
from experiments, but they are quite systematic. Here we will summarize what we have done
so far.

For semiconductors and insulators [14, 15, 17], QSGW gives rather satisfactory results.
For example, for GaAs [14], the QSGW fundamental gap and conduction-band effective mass
are Eg = 1.93 eV (compare with Eexpt+correction

g = 1.52 + 0.17 eV, where 0.17 eV is the
correction due to spin–orbit (SO) coupling and zero point motion), and m∗

c = 0.077 m0

(m∗,expt
c = 0.065 m0). The QSGW optical dielectric constant is ε∞ = 8.4 (εexpt

∞ = 10.8).
For comparison, 1shotGW underestimates gaps and masses: EGLDAW LDA

g = 1.29 eV and

m∗,GLDAW LDA

c ≈ 0.059 m0, while ELDA
g = 0.21 eV and m∗,LDA

c = 0.020 m0. (See also
the discussion when we use Z = 1 [6].) This case is a typical case; in a wide range of
semiconductors and insulators, we have seen generally that band gaps are predicted to be a little
too large (typically, ∼0.1–0.3 eV), and the effective masses are well improved (these are also a
little high). Further, the remaining differences from experiments are rather systematic [14, 17].

Neglecting the off-diagonal part in equation (7), that is, the eigenvalue-only self-
consistency, while keeping the eigenfunctions as given in the LDA (e-only), is not so bad
an approximation for the usual semiconductors. We can see the effects of the off-diagonal
part from the difference of the e-only result and the QSGW results [17]. Even for ZnO, the
band gap given by e-only Ee−only

g = 3.64 eV is not so far from the results including the off-
diagonal part: EQSGW

g = 3.87 eV (LDA: 0.71 eV, 1shotGW : 2.46 eV, expt + correction:

3.44+0.164 eV). However, in the cuprate Cu2O, the difference is larger: Ee−only
g = 1.98 eV and

6
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Figure 1. Energy bands for TiO2

(rutile) and SrTiO3 LDA: broken line
(blue). QSGW : solid line (light
green).

(This figure is in colour only in the
electronic version)

EQSGW
g = 2.36 eV; (LDA: 0.53 eV, 1shotGW : 1.88 eV, experiment: 2.17 + 0.33 eV). In NiO

and MnO, the e-only self-consistency shows very poor results as seen in figure 9 in [17]. From
the beginning, e-only does not improve the magnetic moments. For NiO, QSGW improved the
magnetic moment well (QSGW gives 1.72 μB; 1.9 μB in experiment and 1.28 μB in the LDA).

In NiO and MnO (where the gap is between d bands), QSGW predicts ∼1–2 eV larger
band gaps than found in experiments (see [17] for details). We think that this is reasonable: in
these systems the excitonic effects are larger compared with the ordinary semiconductors. This
will generate larger errors. As a next step, it will be necessary to include excitonic effects and
make it self-consistent in the same manner as QSGW with (7).

We found an interesting fact that, even for these oxides, the error of the dielectric constant
is almost ∼20%, as we will explain in detail elsewhere. ε∞ values are 3.9 (QSGW ) and 4.95
(experiment) in MnO; and 4.4 (QSGW ) and 5.43 (experiment) in NiO (see table 6 in [17]).
This is similar to the ratio of the GaAs case, with 8.4 (QSGW ) versus 10.8 (experiment).

Recently, we have implemented a method to calculate the spin susceptibility based on
QSGW . It assumes a scaler Stoner I , which is determined by the spin wave condition as
ωsw → 0 at q → 0. Our preliminary results for the spin wave dispersion are in good agreement
with experiment for MnO (we will report this elsewhere). Furthermore, for ferromagnetic
MnAs (in NiAs-type and in zinc blende phase) we found that the spin wave spectrum shows
that the ferromagnetism for the ground state is stable, though the calculation based on the LDA
shows that it is unstable.

The energy bands of the Ti compounds rutile TiO2 and SrTiO3 are shown in figure 1.
The band gap occurs between O(2p) and Ti(3d). In these cases, the band gaps are enhanced
compared with the LDA. Further, the oxygen valence bands widen; the density of states of this
oxygen valence bands for SrTiO3 is in excellent agreement with XPS data [13]. The (optical)
experimental band gaps are ∼3.0 eV (TiO2) [35] and 3.25 eV (SrTiO3) [36]; QSGW values are
∼1 eV higher. This is consistent with other cases.

In [15], we have applied QSGW to evaluate spin splittings for semiconductors for various
of III–V and II–VI semiconductors. This is an important quantity for spintronics applications:
it is a factor needed to determine the spin-relaxation life time, among other things. In spite
of its importance related to the spintronics recently, no first-principles methods were available.
We evaluated the effect of the SO coupling on the self-consistent QSGW results without SO
coupling. We found reasonable agreements with experiments, and we gave some predictions.

7
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This success is thanks to the fact that QSGW gives a satisfactory description of the band gap,
effective mass, and also eigenfunctions.

In summary, we have developed a new self-consistent GW method which seems rather
satisfactory from a theoretical viewpoint. We have applied it to various kinds of materials:
semiconductors, transition metal oxides, and so on. We generally obtain very good agreement
with experiments; the remaining errors are systematic and are interpreted as being due to what
is not yet included in QSGW . Thus it will be possible to include them.
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